बलीय बीजगणित का प्रत्येेक फलन िजिसमें अचर न हो को ,एक िवियोजनीय प्रसामान्य रूप में व्यक्त कर सकते है।
उप्पत्ति-
परिभाषा से हम जानते है कि फलन का िवियोजनीय प्रसामान्य रूप चरों के गुणनफलों के योग के रूप में प्रदर्शित होता है।
माना f(x1,x2.....xn) बूलीय बीजगणित B(+,.,') मेंं n चरों x1,x2.... xn का एक अचर रहित फलन है ।प्रथम चरण मेें व्यंजक या फलन से ( यदि हो तो) डी-मार्गन िनियम का प्रयोग कर पूरक (') को खाेलते है। िद्वतीय चरण में ,यदि आवश्यक हो ,तो वितरण नियम का प्रयोग कर (.) का (+) पर िवितरण करते है।
अब तृतीय चरण में एक चर माना xi के साथ अन्य चर लाने के िलिए xi को xi1लिखते है। तत्प श्चात् xi1 के स्थान पर xi(xj+xj') लिखते हैा जिससे फलन में xixj+xixj' गुणन के योग में आते है।
इसी प्रक्रिया को दोहराकर सभी चर x या x'के रूप में उपस्थित रहते है!
अंतिम रूप से अब पुनरावृत्त्ि वाले पदों काेे केवल एक बार (वर्गसम िनियम से)लिखा जाता है। इस प्रकार से िदिया गया फलन िवियोजनीय प्रसामान्य रूप मेें परिवर्तित होता है।
उप्पत्ति-
परिभाषा से हम जानते है कि फलन का िवियोजनीय प्रसामान्य रूप चरों के गुणनफलों के योग के रूप में प्रदर्शित होता है।
माना f(x1,x2.....xn) बूलीय बीजगणित B(+,.,') मेंं n चरों x1,x2.... xn का एक अचर रहित फलन है ।प्रथम चरण मेें व्यंजक या फलन से ( यदि हो तो) डी-मार्गन िनियम का प्रयोग कर पूरक (') को खाेलते है। िद्वतीय चरण में ,यदि आवश्यक हो ,तो वितरण नियम का प्रयोग कर (.) का (+) पर िवितरण करते है।
अब तृतीय चरण में एक चर माना xi के साथ अन्य चर लाने के िलिए xi को xi1लिखते है। तत्प श्चात् xi1 के स्थान पर xi(xj+xj') लिखते हैा जिससे फलन में xixj+xixj' गुणन के योग में आते है।
इसी प्रक्रिया को दोहराकर सभी चर x या x'के रूप में उपस्थित रहते है!
अंतिम रूप से अब पुनरावृत्त्ि वाले पदों काेे केवल एक बार (वर्गसम िनियम से)लिखा जाता है। इस प्रकार से िदिया गया फलन िवियोजनीय प्रसामान्य रूप मेें परिवर्तित होता है।
No comments:
Post a Comment