Thursday 14 April 2016

Sub group

Subgroup:à
                            Suppose (G,o) be a group and H⊆G where H Ø  .. Then H is called Subgroup of g if
  1.        H is stable for operation “o”.
  1. (H,O) is also a Group.

In other words , H is called subgroup of G if it is satisfy all condition of Group…

Complex of a Groupà
Suppose (G,o) be a Group ,then a subset of  H of G is called complex iff    a,b∈H => aob∈H for all a,b ∈H

Proper and improper subgroupà
If a group (G,o) have two subgroup (G,o) and ({e},o) then that subgroup is called improper or trival .. and different from it that is others subgroup is called  proper (non-trival subgroup)…


Some example of subgroup:- let (Z,+) be a set of integer.let (E,+) be a set denoted to even  numbers and (O,+) be set that denoted to odd numbers.set of even numbers is a subgroup of Z ie (E,+) is a subgroup of Z but (O,+) is not a subgroup of Z because it does not satisfies closure law because if 1,3 ∈O then 1+3=4 does not belogs to O.and we can also say (E,+) is a proper subgroup of Z.

* (Z,+) is a subgroup of set of all rational numbers.and it is also a proper subgroup of (Q,+).

* if H={1,-1} and G={1,-1,i,-i} then (H,.) is a subgroup of (G,.).this is because if we take two element of H then we can get a new value of H which is also in set of H. then we can say it is satisfies closure ,associate , identity (ie 1) and inverse .then it is a subgroup of G.
Theoram-
For a subgroup , of a non-empty set H⊆G the necessary and sufficient condition is that
a∈H ,b∈H =>ab-1∈H   where b-1 is inverse of b.
proof-
The condition is necessary:à let H be a subgroup of G.
Then to showà a∈H ,b∈H =>ab-1∈H

We know that a H is a subgroup then it have a inverse of each element i.e. if à a∈H=> a-1∈H.
And H should be closure with respect to .(dot)
Therefore  a∈H , b∈H => a∈H,b-1∈H    (inverse low)
                                 => ab-1∈H          (closure low)  proved I condition
The condition is sufficientà
Let H be a non-empty set of G s.t. a∈H ,b∈H =>ab-1∈H……………..(i)
Then to showà H is a subgroup of G.
For this we have to show four exioms.

1 (identity)à a∈H ,a∈H =>aa-1∈H                from(i)
                                    =>e∈H
Therefor H have a identity element.

II(inverse)à
          Let a is element of H
Then     e∈H ,a∈H =>ea-1∈H
                           =>a-1∈H
i.e. H contains inverse of each element.

III(closure)à
          Let a,b∈H then
            a∈H ,b∈H => a∈H ,b-1∈H
                            =>a (b-1 )-1∈H
                            =>ab∈H
                        Therefor H is closure.

IV(associate)à H satisfies associate law because
 for all a,b,c∈H=> a,b,c∈H
                       =>a,b,c∈G
                   =>a(bc)=(ab)c for all a,b,c ∈H
H satisties all condition of group Therefore H is a Subgroup.



 hence proved




Q 2              A non-empty set H⊆G is a subgroup of G iff 
     (i)a∈H ,b∈H =>ab∈H
  (ii) a∈H=>a-1∈H  where  a-1 is the inverse of a
 Proof:-
                  Suppose H be a subgroup of G .
To show:- (i)a∈H ,b∈H =>ab∈H
     (ii) a∈H=>a-1∈H
Since H is a subgroup of G so it is satisfies all condition of group.
                  (i)a∈H ,b∈H =>ab∈H  (closure in H)
                  (ii) a∈H=>a-1∈H   (inverse in H). first part prove

Conversaly:-
      Let H be a non-empty set of G.and it is satisfies two conditions (i) and (ii)
To show:-  H shall be subgroup.

1. closure:-  a∈H ,b∈H =>ab∈H             . . . . . . from (i)
        H is satisfies closure low.
2.                  H satisfies associate law because
         for all a,b,c∈H  => a,b,c∈H                       H⊆G
                                              =>a,b,c∈G
                                              =>a(bc)=(ab)c for all a,b,c ∈H

3. Identity low  =>     form (ii)   a∈H=>a-1∈H  
                                 a∈H , a-1∈H   =>aa-1∈H       from (i)
     ð  e∈H  
  therefore indentity satisfies identity low.
 4. inverse low:-  a∈H=> a-1∈H    from(ii)
                       So H have inverse of each element.
H satisfies all condition of group therefore H is a subgroup of G.
 
                                                                                                                                    Hence proved.



Th 3.            For a subgroup , of a non-empty set H⊆G the necessary and sufficient condition   HH-1H.
Proof:-         necessary condition:-
suppose H be a subgroup of G.
                   Let ab-1∈HH-1 be a orbitary element .
                   a∈H , b∈H => a∈H,b-1∈H    (inverse low in H ,because H is a subgroup)
     =>ab-1∈H
So, ab-1∈HH-1 => ab-1∈H , for all a,b in H
Therefore HH-1H….
Suffiecient condition:-
                         Let H be a non-empty set such that HH-1H.
To show :-        H shall be a subgroup of G.
                         a∈H , b∈H => ab-1∈HH-1   (by the definition of HH-1 )
                                           => ab-1∈H              (HH-1H)
i.e.                    a∈H , b∈H => ab-1∈H   for all a,b in H.
                         therefore H is a Subgroup of G.

                                                                                                                     hence proved……………


Thà     if H and K are two subgroups then H∩K also a subgroup.
Proofà   HK is a subgroup of G
 since H and K are two subgroups. Let e∈H, e∈K => e∈HK . i.e. HK Ø.
                 Since H is subgroup of G then    a∈H ,b∈H =>ab-1∈H  …………(1)
             Since K is a subgroup of G then a∈K ,b∈K =>ab-1∈K  ………(2)
Now,    let  a∈HK ,b∈HK=>a,b∈HK
                             =>a,b∈H and a,b∈HK
                             => ab-1∈H  and ab-1∈K               by (1) and (2)
                             => ab-1 ∈HK       for all a,b ∈HK
i.e.        a∈HK ,b∈HK=> ab-1 ∈HK       for all a,b ∈HK
therefore HK  is a subgroup of G..



Theoramà  prove that union of two subgroup H and K is a subgroup of G iff they contains each others.
Proofà
Firstly To showà   H∪K is a subgroup of G.

             let H and K are two subgroups.and let they contains each others. i.e. H⊆k and K⊆H.
            then  H∪K=H or K . and H and K are subgroup therefore H∪K is a subgroup of G.

conversalyà let H∪K is a subgroup of G
to showà H⊆k and K⊆H.
assume contrary- HéK and KéH.
now                  HéK=> there exist  a∈H then a∉K.                ……..(1)
                        KéH => there exist b∈K then b∉H.                        ……..(2)
                   From (1) and (2)
                   a∈H then a∉K=>a∈ H∪K.
                   b∈K then b∉H=>b∈ H∪K.
            so,    a∈ H∪K , b∈ H∪K=>ab ∈ H∪K               (since H∪K is a subgroup then closure)
                   let ab=c ∈ H∪K=> ab=c ∈ H or, ab=c ∈ K
                  
          now
ab=c ∈ H=>b=c-1a∈ H  , but b∉H this is a contradiction.
ab=c ∈ K => a=cb-1∈ H  but a∉K  this a contradiction.
Therefore H⊆k and K⊆H.

                                                                   Hence proved

 if u like this then give us feedback and follow ..........

No comments:

Post a Comment