Wednesday, 27 April 2016

Subring

 Subring-

Definition-  suppose S be a non-empty set of (R, +, .) and if S be stable in R for addition and multification then it is called subring if
                                a ∈S , b∈S => a+b∈S
                             a ∈S , b∈S => ab ∈S for all a,b∈S.

                in other word, A non-empty set S is called subring if it is satisfies all axioms of a Ring.



Theoram:- suppose (R,+,.) be a Ring and S be a non-empty set of R.then (S,+,.)  will be subring of (R,+,.) iff
a) a ∈S , b∈S => a-b∈S
b) a ∈S ,b∈S => a.b ∈S for all a,b∈S.
Proof:- suppose (S,+,.) be a subring of (R,+,.) i.e. S is a ring itself.
To show:-  a) a ∈S , b∈S => a-b∈S
                  b) a ∈S ,b∈S => a.b ∈S for all a,b∈S
 since          a ∈S , b∈S    => a∈S, -b∈S      [inverse law]
                        =>a+(-b) ∈S              [closure low]
                        =>a-b∈S     for all a,b∈S

Now ,                 a ∈S ,b∈S => a.b ∈S for all a,b∈S.  [ closure for dot]
                                                                                    Proved first part.
Conversaly :-
                        Let S is a non empty set of R which is satisfies two axioms.
                        a) a ∈S , b∈S => a-b∈S     ………(1)
                         b) a ∈S ,b∈S => a.b ∈S for all a,b∈S…..(2)
to show:-          S is a subring of (R,+,.).
                        from (1)
a)       a ∈S , a∈S => a-a∈S
                           => 0   i.e. identity exist in R.
Now 0 ∈S , b∈S => 0-b∈S          [from 1]
                         => -b∈S.  i.e. inverse of every element exist.

                        Now a ∈S , b∈S    => a∈S, -b∈S      [inverse law]
                        =>a-(-b) ∈S                         [from 1]
                        =>a+b∈S     for all a,b∈S
i.e. closure for addition axist.
Now take a,b,c ∈S and S⊆R then a,b,c ∈R.
Therefore a+(b+c) = (a+b)+c for all a,b,c ∈S
i.e. associate law satisfies.
a,b∈S and S⊆R then a,b ∈R.
Therefore a+b = b+a  for all a,b ∈S
i.e. commutative law satisfies.
Therefore        (S,+) is an abelian group.
 Now                 (S,.) is an semi group.
                        Form (2)
                        a ∈S ,b∈S => a.b ∈S for all a,b∈S
                        closure for dot is satisfies.
Associate satisfies because a,b,c ∈S and S⊆R then a,b,c ∈R.
Therefore a.(b.c) = (a.b).c for all a,b,c ∈S
Therefore (S,.) is a semi group.
Since a,b,c ∈S and S⊆R then a,b,c ∈R.
 a(b+c) = a.b+a.c for all a,b,c ∈S
(b+c).a = b.a+c.a for all a,b,c ∈S

                   Therefore (S,+,.) is a subring … Hence Proved


Theoram :- prove that Intersection of two subrings is also a subring.
Proof:-      suppose (S,+,.) and (K,+,.) are two subrings. Since S i, K i=> S∩K i
To prove:- S∩K is also a subgroup.
For this we shall prove :-  a) a S∩K , b∈ S∩K => a-b∈ S∩K
b)       a S∩K ,b∈ S∩K => a.b ∈ S∩K for all a,b∈ S∩K.
now
                                a ∈ S∩K => a∈S and a∈K
                                b ∈ S∩K => b∈S and b∈K
Since S and K are subring then
                                a ∈S , b∈S => a-b∈S ,ab∈S ………………A
                        a ∈K , b∈K => a-b∈K ,ab∈K……………..B
now                  a ∈ S∩K ,b∈ S∩K =>a,b∈S and a,b∈K
                                      =>a-b∈S ,ab∈S ,and a-b∈K ,ab∈K
                                       => a-b∈S and a-b∈K, ab∈S and ab∈K
                                       =>a-b SK , a.b ∈ S∩K
Therefore S∩K is a subring..



Definations:-Left Ideals: suppose (R,+,.) be a ring then a non-empty set of S of R is called left ideals if
1)       S is a additive subgroup of R.
2)       For all s∈S, r∈R => sr∈S.

Right Ideals: suppose (R,+,.) be a ring then a non-empty set of S of R is called right ideals if
1) S is a additive subgroup of R.
2) For all s∈S, r∈R => rs∈S.


Ideals :- suppose (R,+,.) be a ring then a non-empty set of S of R is called ideals if
1) S is a additive subgroup of R.

2) For all s∈S, r∈R => sr∈S , rs∈S

No comments:

Post a Comment